Правило буравчика

Правило буравчика

Правило буравчика — это техника запоминания, которая помогает определить направление магнитных стрелок в зависимости от тока.
Алгоритм кратко, точно и понятно показывает, куда ориентированы линии магнитного поля.

Определение

Учёный, открывший данный закон, — настоящая загадка истории: про него известно лишь то, что фамилия у него была Буравчик.
Большинство склоняются к тому, что звали его всё-таки Пётр Сигизмундович.
Про него сочиняют немало баек.
Даже с появлением закона буравчика связана забавная полушутка-полулегенда: якобы когда Буравчик смог сформулировать это правило (правда, название было не в честь его автора, а в честь тех предметов, которые действовали согласно данному закону), он отправился прямиком в Москву, на поклон к Михаилу Васильевичу Ломоносову.
Простота метода несколько смутила великого учёного, и он, погрузившись в размышления, отвернулся и начал, извините за выражение, ковыряться в носу.
На что Пётр Сигизмундович ехидно заметил, что Михаил Васильевич, используя свой палец как буравчик, в точности следует его закону.
После этого Ломоносов уже не колебался в принятии решения относительно изысканий Буравчика: правилу — быть!
Каждый физик формулирует это правило своими словами, однако суть всегда такова: если направление движения штопора будет проходить в одну и ту же сторону с направлением тока внутри проводника, то его ручка продемонстрирует сторону, в которую будет обращён вектор магнитной индукции.
В свою очередь, штопор интерпретировался в правило правой руки, которое, в свою очередь, послужило основой для другого мнемонического закона, правила левой руки, благодаря коим физика кажется намного проще. Всех их активно применяют во многих её областях — в этом немалую роль играет их простота вкупе с эффективностью, которые были отмечены ещё Ломоносовым, а также то, что звучат они кратко и понятно: с помощью правила буравчика можно определить, к примеру, сторону, в которую направлены угловая скорость, магнитная индукция, параметры индукционного тока и многое другое, что позволяет решать задачи.
В этой статье мы подробно рассмотрим все случаи этих правил и правила винта.

Общее главное правило

У правила есть несколько вариаций, используемых для частных случаев.
Однако главный вариант может применяться для многих случаев.
Удобнее всего использовать в векторном произведении положительный вектор и в базисе правую упорядоченную тройку.
При таком подходе у сомножителей будет положительный знак и не придется учитывать, где ставить минус, а где нет.
Правым базисом называется упорядоченная тройка векторов, расположенных так, что кратчайший путь по порядку осуществляется против часовой стрелки.
Если три пальца (кроме мизинца и безымянного) расставить перпендикулярно друг другу и принять их за оси Ox, Oy, Oz для среднего, указательного и большого пальцев соответственно, то получится правый базис.
Предпочтителен выбор положительного вектора или базиса в силу удобства подсчетов. Но возможно использование и левого базиса.
К примеру, его выбирают для задач, в которых применение положительного значения невозможно.

Для векторного произведения

Для него это правило:

  1. Если вы изобразите векторы так, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС (вектор-сомножитель) ко второму ВС самым быстрым способом;
  3. Тогда наш бур будет завинчиваться в сторону ВП (вектора-произведения).

Нетрудно заметить, как сильно изменилась формулировка: она заметно усложнилась и её намного тяжелее воспринимать без картинки, чем все остальные.
Однако можно несколько упростить себе задачу и переформулировать с использованием часовой стрелки:

  1. Если вы изобразите векторы таким образом, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС ко второму самым быстрым способом и станете наблюдать с того ракурса, чтобы это кручение располагалось для вас по часовой стрелке;
  3. Тогда ВП будет направлен от вас.

Правило буравчика

Использование стрелок делает всё намного проще, не правда ли?

Этого материала хватит для полного понимания темы.
В следующем абзаце предлагаю рассмотреть, как это же правило будет выглядеть для базисов, в частности, для правого.

Для базисов

Это правило будет работать и для базисов почти аналогично.
В правом базисе при вращении штопора, направленного по одному из векторов, по наиболее короткому пути ко второму вектору закручивание инструмента укажет направление третьего вектора.
Для простоты запоминания представляют настенные часы:
две вектора — это стрелки, а третий направлен к или от наблюдателя (выбор будет определять ориентацию всего базиса, то есть будет он правым или левым).

Правило буравчика
Правило буравчика универсально и подходит для определения многих векторов, так как зачастую в таких законах используются базисы и векторное произведение, которые подчиняются одним определенным законам.
Также используют для уравнения Максвелла, которые описывают поле индукции в сплошной среде и его влияние на точечные заряженные частицы.

Большой палец и правило правой руки для

Соленоида:

Во избежание дополнительных вопросов к статье, поясню значение этого слова поподробнее:
соленоид — проволочная спираль, иногда представляемая как катушка с током — неотъемлемая часть многих задач по физике и электротехнике.
Для соленоида правило правой руки может состоять из нескольких вариантов формулировок, но, как правило, так:

  1. Если вы возьмёте соленоид правой рукой;
  2. А после этого направите четыре пальца вдоль тока в витках;
  3. Тогда окажется, что ваш большой палец показывает, куда направлены линии напряжения магнитного поля, расположенные внутри катушки.

Как вы можете убедиться, ничего сложного здесь нет. Поэтому предлагаю рассмотреть другие примеры.

Магнитного поля

Правило правой руки для магнитного поля будет звучать так: если направить большой палец, отогнутый на 90 градусов от других, по движению проводника, а ладонь расположить так, чтобы линии поля «входили» в нее, то остальные пальцы совпадут с вектором индукционного тока.

Векторного произведения:

Это правило (в переписанном виде) отличается от предыдущих.
У него есть два варианта звучания.
Первая формулировка правила правой руки читайте:

  1. Если вы изобразите вектора таким образом, чтобы их начальные координаты совместились при наложении;
  2. Начнёте вращать первый BC (вектор-сомножитель) самым коротким способом ко второму ВС;
  3. А также расположите все пальцы правой руки (за исключением большого) так, чтобы они демонстрировали сторону, в направлении коей происходило вращение, словно вы сжимаете в руке цилиндр;
  4. Тогда ваш большой палец укажет направление ВП (вектора-произведения).

Вторая формулировка часто именуется «пистолетом» и звучит так:

  1. Если вы изобразите вектора таким образом, чтобы их начальные координаты совместились при наложении;
  2. Большой палец расположите по направлению первого BC;
  3. Указательный — по направлению второго ВС
  4. Тогда и только тогда ваш средний палец укажет примерное направление ВП.

Это мнемоническое правило довольно несложно запоминать как ФБР — на английском эта аббревиатура FBI:

  1. F — сила, которая протекает параллельно среднему пальцу;
  2. B — вектор магнитной индукции, направленный по указательному
  3. I — ток, протекающий по большому.

Кроме того, как я уже упоминала ранее, его ещё называют «пистолетом»: несложно заметить, что ваши пальцы при его выполнении будут расположены в виде пистолета.

Правило буравчика
На этом наше изучение правила правой руки подошло к концу, и мы обратимся к третьему (и кратчайшему) разделу статьи — правилу левой руки (ПЛР).

Правило левой руки для

Главное различие правил правой и левой руки в их назначении, а также в выборе ладони.
Правило левой руки применяется для определения силы Ампера и силы Лоренца, в то время как правой рукой можно определить векторы разных величин (например, магнитную индукцию, угловую скорость, вращающий момент).

Силы Ампера, в чём оно заключается

Первое правило левой руки связано с силой Андре-Мари Ампера, кою французский учёный открыл в тысяча восемьсот двадцатом году — сразу после закона Ампера.
Принцип его работы следующий:

  1. Поместите свою левую ладонь так, чтобы в её внутреннюю сторону перпендикулярно ей входили линии индукции магнитного поля;
  2. Все пальцы, за исключением большого, направьте по электротоку
  3. В таком случае, ваш левый большой палец, который должен образовать прямой угол с остальными, покажет направление силы, которая будет действовать со стороны магнитного поля на проводник с током — то есть силы Ампера.

Однако это только один вариант ПЛР.

Силы Лоренца и отличия от предыдущего

Сила магнитного поля, которая действует на заряженную частицу точечного размера, называется силой Лоренца.
Эта величина необходима для дополнения уравнения Максвелла и описания поведения электромагнитного поля, заряженных частиц.
Определяют направление правилом для левой руки.
Выполняется этот алгоритм следующим способом.
Пальцы (кроме мизинца и безымянного) располагают перпендикулярно друг другу (сначала большой и указательный в виде буквы «Г», а затем средний отставляют под прямым углом к ним обоим).
Соответствующий палец укажет направление:

  • Силы Лоренца — большой;
  • Магнитных линий — указательный;
  • Тока — средний.

Главное отличие в положении руки.
Обратите внимание, что в предыдущем случае мы использовали раскрытую ладонь, а в этом лишь тремя пальцами, сложенными в пистолет.

Механическое вращение

Важные сокращения: ПБ — правило буравчика, УС — угловая скорость, ППР — правило правой руки.
Формулировка ПБ для механического вращения  определяется следующим образом:
Если вы начнёте завинчивать бур в направлении, в коем крутится корпус, он будет закручен в ту сторону, куда будет стремится УС.
Как и ожидалось, здесь всё просто и понятно.
Но вот ППР в механике  определяется заметно иначе.
Это правило в данном случае выглядит и работает так:

  1. Если вы возьмёте некий объект в правую руку;
  2. Затем станете крутить его в ту сторону, в кою вам указывают все пальцы, кроме большого;
  3. Тогда последний оставшийся палец укажет нам, куда будет стремится УС при таком вращении.

Абсолютно также вы сможете найти сторону, в которую будет направлен угловой момент.

Это было ожидаемо, потому как угловой момент прямо пропорционален угловой скорости с положительным (!) коэффициентом.
Аналогично это будет выглядеть и для момента импульса.
Но вернёмся к нашему чудесному правилу винта и посмотрим, как такой подход работает для момента силы.

Правило буравчика для момента

Момент сил — это вектор силы, которая вызывает вращательное движение какого-то объекта.
Вращательный момент связан с другими величинами, например, работой, совершаемой во время вращения тела.
Хоть алгоритм и работает аналогично, сформулируем правило винта (буравчика) для момента силы.
Если прокручивать штопор туда, куда силы смещают тело, то направление завинчивания инструмента укажет направление вращательного момента.
Для правой руки правило звучит так: мысленно взяв предмет в правую руку, предмет двигают в сторону направления четырех пальцев (их ориентация должна совпадать с той стороной, куда силы пытаются сместить объект), большой распрямленный палец же укажет вектор вращающего момента.

Определение направления тока буравчиком

Как было уже сказано выше, направление тока можно определить опираясь на ПБ.
Делается это следующим образом:

  1. Ваша правая рука должна взять проводник;
  2. После этого вам надо оттопырить четыре пальца по направлению линий индукций магнитного поля;
  3. Тогда ваш большой палец, поднятый вверх, укажет направление электротока.

Довольно удобная пошаговая инструкция, не правда ли?

Правило буравчика
Кроме того, переформулировав наше утверждение, можно определить направление вектора магнитной индукции, о чём будет более подробно сказано в абзаце ниже.

Определение направления вектора магнитной индукции с помощью правила буравчика

Чтобы определить направление линий магнитной индукции, сделаем следующее.
Острием буравчика укажем вектор силы тока, тогда сторона, в которую инструмент будет закручиваться, покажет направление магнитной индукции для этого проводника.
Инструмент выпускают с разным направлением закручивания, поэтому подразумеваем, что используется традиционный, закручивающийся направо.
Если вы привыкли к другому варианту, вы можете представлять, что штопор выкручивается.
С правой рукой все также: если представить, что исследуемый проводник в обхватывающей правой ладони, а большой палец направлен по направлению течения электрического тока, то загнутые оставшиеся пальцы будут совпадать с линиями магнитной индукции.

Способы определения движения электрического тока и магнитного поля с помощью правила винта

Для того, чтобы вы могли найти ту сторону, куда стремится магнитное поле, вернее, магнитных линий возле проводника с током, было придумано правило правого винта, которое  определяется так: если вы начнёте ввинчивать буравчик согласно тому, как направлен ток в проводнике, тогда сторона, в которую будет вращаться ручка буравчика, продемонстрирует нам, куда будут стремиться линии магнитного поля.
А вот для электротока правило формулируется несколько иначе:

  1. Вначале следует выполнить обхват рукой провода;
  2. Затем необходимо сжать все пальцы, кроме главного, в кулак;
  3. Большой же палец, который надо будет поместить вертикально, укажет вам путь перемещения электрического тока.

Итак, мы рассмотрели самое главное: правило буравчика, правило правой и левой руки.
Последние два пункта будут дополнять нашу статью и демонстрировать специальные случаи, которые будут позволять знать материал безукоризненно.

Разветвление взаимодействия проводников с током в опытах ампера

Когда Эрстед открыл возникновение индукции в проводнике с током, Ампер вдохновился и начал свои исследования.
Ученый провел серию экспериментов с параллельными проводниками, в которых доказал, что вокруг заряженной частицы образуется магнитное поле.
Благодаря своим наблюдениям он пришел к выводу, что если пустить по проводникам ток в одну сторону, то они притягиваются, а если в разные стороны, то отталкиваются.

Правило буравчика
Объяснить это можно с помощью правила буравчика.
В первом случае видно, что магнитные поля каждого проводника идут по направлению к наблюдателю в точке между ними, индукции мешают друг другу, провода отталкиваются.
И наоборот во втором случае: в точке, где у правого проводника линии идут на наблюдателя, у левого они идут от него.

Направление линий магнитной индукции внутри постоянного магнита

Об этом можно сказать, пожалуй, меньше всего. Учёные считают, что линии напряжения магнитного поля, кое создаётся постоянным магнитом, направлены — разумеется, внутри магнита — от южного к северному полюсу.
На этом моя статья подошла к концу. Надеюсь, что вы были довольны этой информацией, позволяющей досконально разобраться в вашей теме, и что она поможет вам в ваших изысканиях в области науки.

 

Оцените статью
Сайт об основах электротехники для электриков и домашних мастеров
Добавить комментарий

  1. MashikrhynC

    Спасибо. Все, что я прочитал было очень полезным.

    Ответить
Adblock
detector